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1. Abstract 

In an effort to control the spread of the Severe Acute Respiratory Syndrome Coronavirus 

(SARS-CoV-2), the CDC and other national health protection agencies have developed 

mathematical models to inform decisions about pandemic planning, resource allocation, and 

implementation of social distancing measures and other interventions (CDC, 2020). These 

modeling techniques have proved crucial when determining reopening plans for college 

campuses, as they are particularly prone to the rapid spread of COVID-19. This paper seeks to 

model the spread of COVID-19 on the Duke University campus using an SIR-based model in 

hopes of determining the safest and most effective reopening plan for the 2021 spring semester. 

Previous SIR-based models from other universities were modified to reflect Duke’s unique 

on-campus and off-campus populations. The effects of varying exogenous shocks, inter-student 

interaction, screening rate, and vaccination rate were analyzed using a parameter sweep to 

determine the most important factors in limiting spread of the virus. It was concluded that 

inter-student interaction has the greatest impact on the size of the infected population, and it is 

vital to keep this number at the lowest possible level; and that screening rate has a significant 

impact on the size of the infected population, and a minimum of 2 tests/week would be required 

to keep the infections at a manageable level. Increasing exogenous shocks does not produce an 

exponential growth in peak infection levels, but does lead to significant differences in 

infected/recovered on- and off-campus populations. Finally, vaccination must occur rapidly and 

be distributed to 83% of students in order to nearly eliminate new cases.  

 

2. Background 

The novel SARS-CoV-2 discovered in 2019 created a pandemic that has changed the 

world. With over 1 million deaths caused by the virus, countries have gone into lockdown, 

education systems have shut down, and wearing masks has become the norm.  

SARS-CoV-2 is a coronavirus which causes COVID-19, a disease that can trigger a 

respiratory tract infection and affect the sinuses, nose, throat, windpipe, and lungs. The virus 

mainly spreads by respiratory droplets and aerosols, especially in crowded, inadequately 

ventilated spaces (Centers, 2020). Research shows that the incubation period for the disease is 

around 14 days (Lauer et al., 2020). 
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Many new measures are being put in place in order to reduce the transmission of 

SARS-CoV-2. Since the coronavirus is spread through respiratory droplets, mask usage can 

reduce the Rt value, or the reproduction number of the virus. Furthermore, to reduce contact with 

droplets from infected individuals, people are being advised to social distance by maintaining a 

minimum of 6 feet apart from each other in public spaces and to not frequent indoor places, 

especially in settings where someone’s mask is likely to be taken off. Various testing methods, 

such as RT-PCR tests, antigen tests, and antibody tests, have been developed for the virus, so 

infected people can be immediately put into isolation if tested positive (Commissioner, 2020). At 

Duke University, students are tested weekly and are required to report symptoms daily on the 

Sym Mon app. Contact tracing is being used to identify students who have been in contact with 

infected people, and they are quarantined for 14 days (Duke United, 2020).  

In order to better understand the epidemiology of COVID-19 at Duke, an SIR-based 

model that computes the theoretical number of infected people in a population over time was 

developed. SIR models are compartment models which consist of susceptible, infected, and 

recovered individuals. Yale University developed an SIR-based model to predict which 

SARS-CoV-2 screening and isolation programs would minimize danger for US residential 

universities. The study evaluated campus screening using varied testing frequency 

(daily-weekly), Rt values (1.5,2.5,3.5), and exogenous shock factors that accounted for 

importation of additional infections. The results of the study showed that across all scenarios, 

testing frequency had the most impact on outcomes.  

Studying such models are crucial for university administrators to determine the safest and 

most efficient way for students and faculty to return to campus. This involves considering factors 

such as testing requirements, on- and off-campus student interaction, and organizing facilities 

required for isolation and quarantine procedures.  

Given that Duke University is currently grappling with many of the same dilemmas, this 

paper aims to use an SIR-based model and kinetics-based equations to investigate the network 

dynamics between student populations in order to effectively emulate the current COVID-19 

pandemic at Duke. 

 

3. Development of Model 

3.1 Compartment Model 
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Figure 0. Compartment Model  

 

The compartment model developed in this paper is based on the SIR model by Paltiel et 

al. (2020) at Yale. Taking inspiration from the model designed by Lopman et al. (2020) at 

Emory, student populations were split into “on-campus” and “off-campus”, as data from the 

Duke Today demonstrated significantly different infection rates between these populations. 

Symmetric compartment models were made for both populations with a rate of infection between 

on- and off-campus susceptible populations. The rate at which general students in the susceptible 

population become infected by the infectious population was taken to be , while the rate atβstu  

which on-campus susceptible students become infected by other infected on-campus students 

constitutes an additional rate. This  rate accounts for the higher rate of inter-student βc βc  

interaction for on-campus students. Although Duke’s report numbers show that off-campus 

students had a higher rate of infection, we assumed that this number is the result of higher 

exogenous shocks, not a greater level of inter-student interaction. This exogenous shock event 

factor accounts for the possibility of student interactions with the surrounding community. As 

such, the off-campus exogenous shock factor was increased. 

For both on- and off-campus, the susceptible population accounts for students who are 

uninfected and unisolated. Students who are uninfected but isolated due to contact tracing 

protocol are moved to the isolated, uninfected population at a rate of 𝛾; this was done to best 
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emulate the contact tracing and isolation process at Duke. Students move back from the isolated, 

uninfected population to the susceptible population at a rate of 𝜇. Students from the susceptible 

population are infected at a rate of β, depending on on- or off-campus, and moved to the infected, 

undetected pool. Exogenous shock events will also move a small proportion of students from the 

susceptible population to the infected, undetected population weekly.  

The infected population can move into two groups: isolated, symptomatic and isolated, 

asymptomatic. The assumption was made that all symptomatic students who report their 

symptoms via the Sym Mon application are immediately isolated, prior to testing, at a rate of σ, 

or the rate of symptom onset for infected individuals (Paltiel et al., 2020). It was assumed that all 

infected, asymptomatic students discover their infection through testing, and are subsequently 

put into isolation. These students are deemed infected and then isolated at a rate of , witheτ · S  

 being the rate at which individuals in the testing pool are screened for infection (Paltiel et al.,τ  

2020), and  being the sensitivity of the screening test. Those isolated, asymptomatic studentseS  

who eventually develop symptoms enter the isolated, symptomatic pool at the symptom onset 

rate of σ. After polling on-campus and off-campus students, it was concluded that screening 

occurs at the same rate for all individuals, and therefore, the same rates of isolation were used for 

the on-campus and off-campus populations. Infected, undetected students can move from the 

infected group to the recovered population at a recovery rate of ρ (Paltiel et al., 2020). 

Students in the isolated, infected population move to the recovered population at a 

recovery rate of ρ. This rate is the same for on-campus and off-campus populations. Isolated, 

symptomatic individuals die at a death rate of δ and are moved to the dead population. It was 

also assumed that all recovered students become immune, and hence cannot be reinfected, 

because there have only been three reported repeat COVID-19 cases worldwide (Mandavilli, 

2020). 

A hypothetical vaccine strategy was incorporated into our model in the case that a 

vaccine becomes readily available. Students will be vaccinated, starting from day 0, from the 

susceptible population and enter the vaccinated population at a vaccination rate times 

effectiveness of vaccine, or  Ξ* . We assume that 90% of those who receive the vaccine willε  

become immune, based on recent data released from Pfizer predicting 90% efficacy of the 

vaccine (“Pfizer”, 2020). It was also assumed that there would be an equal amount of vaccines 

available to the on- and off-campus student populations.  
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3.2 Kinetic equations 

3.2.1 Susceptible 

Susceptible (t+1) = Susceptible(t) -New Infected-New IUs +Returning IUs  -Exogenous Shocks 

-New Vaccinated 

  (t )Si + 1 = (t)Si (t)− λi · Si (t ) 1 p)− Si − 1 · τ · ( − S U (t)+ μ · I i (t)− Z i · Si − Ξ · ε  

here λ  ,w on−campus = βstu · U (t)total
S (t)+U (t)total total

− βc · U (t)on−campus

S (t)+U (t)on−campus on−campus
  

             ,λof f−campus = βstu · U (t)total
S (t)+U (t)total total

 

           ,  and  ZZon−campus = X  of f−campus = Y  

The susceptible compartment represents the uninfected individuals who are capable of being 

infected at rate . These uninfected individuals are isolated as a result of false positive tests atλ  

rate . Those isolated in this manner return to campus at rate . X proportion of1 p)τ · ( − S μ  

students are infected each week due to exogenous shocks. In the trials with vaccine availability, 

 (the vaccination rate multiplied by its efficacy) students are removed from the susceptibleΞ · ε  

group weekly.  

  

3.2.2 Infected, Undetected  

Undetected(t+1)= Undetected(t) -Symptomatic -Recoveries +New Infections -New IA 

+Exogenous Shocks 

  (t )U i + 1 = (t)U i (t)− σ · U i (t)− ρ · U i (t)+ λi · U i (t ) e− U i − 1 · τ · S (t)+ Z i · Si  

here λ   ,w on−campus = βstu · U (t)total
S (t)+U (t)total total

− βc · U (t)on−campus

S (t)+U (t)on−campus on−campus
 

             ,λof f−campus = βstu · U (t)total
S (t)+U (t)total total

 

           ,  and  ZZon−campus = X  of f−campus = Y  

The infected, undetected population represents individuals who have contracted the virus, but 

have not been identified via testing. This population increases with new infections at rate .λi  

Students develop symptoms at rate , and are promptly isolated. Those who remainσ  

asymptomatic are isolated at rate  through true positive test results. Individuals in thiseτ · S  

compartment recover at rate .ρ  
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3.2.3 Isolated, Uninfected 

Isolateduninfected(t+1)= Isolateduninfected(t) - Returning IUs + New IUs 

 U (t )I i + 1 = U (t)I U (t)− μ · I i (t ) 1 p)+ Si − 1 · τ · ( − S   

The isolated, uninfected population represents the individuals who have not contracted the virus, 

but are placed in isolation at rate  due to false positive tests. These students leave1 p)τ · ( − S  

isolation and return to normal activity at rate .μ  

 

3.2.4 Isolated, Asymptomatic 

Isolatedasymptomatic (t+1)= Isolatedasymptomatic (t) - Symptomatic - Recoveries + New IAs 

  A (t )I i + 1 = A (t)I i A (t)− σ · I i A (t)− ρ · I I (t ) e+ U i − 1 · τ · S  

The isolated, asymptomatic population represents students who have been isolated at rate eτ · S  

as a result of true positive tests. Individuals who develop symptoms at rate  remain isolated,σ  

but are placed in the isolated, symptomatic compartment. These individuals recover at rate .ρ   

 

3.2.5 Isolated, Symptomatic 

Isolatedsymptomatic(t+1)= Isolatedsymptomatic(t) - Recoveries - Deaths + New Symptomatic 

  S (t )I i + 1 = S (t)I i S (t)− ρ · I i S (t)− δ · I i [IA (t) (t)]+ σ i + U i  

The isolated, symptomatic population represents students who have been isolated at rate  as aσ  

result of symptom onset. These individuals recover at rate  and die at rate .ρ δ   

 

3.2.6 Recovered 

Recovered(t+1)= Recovered(t) + New Recoveries 

 (t )Ri + 1 = (t)Ri [IA (t) (t) S (t)]+ ρ i + U i + I i   

The recovered population represents students from the isolated, asymptomatic; undetected; and 

isolated, symptomatic populations who have been infected and subsequently recover at rate .ρ  

 

3.2.7 Vaccinated 

Vaccinated(t+1)= Vaccinated(t) +New Vaccinations 

(t ) (t)V i + 1 = V i + Ξ · ε  
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The vaccinated population represents students who gain immunity with  newly vaccinatedΞ · ε  

individuals each week. 

 

3.2.8 Deaths 

Deaths(t+1)= Deaths(t) + New Deaths 

 (t )Di + 1 = (t)Di S (t)+ δ · I i   

The dead population increases at death rate .δ  

 

3.2.9 Total Population 

 U  IU  IA  IS  R  D  P = ∑
 

i
Si +  i +  i +  i +  i +  i +  i + V i  

The sum of all the populations described above, both on-campus and off-campus, make up the 

total population of interest: Duke students. 

 

3.3 Universal Constants 

In order to better compare the variables over which we will sweep, some factors must be 

kept constant. Initial population was set to be 4000 students spread evenly across on and off 

campus, 11 of which are infected but undetected (“Duke COVID Testing Tracker”, 2020) (6 on 

campus, 5 off). Baseline calculations for death rate, recovery rate, symptom onset rate, as well as 

sensitivity and specificity of COVID-19 tests are cited in Table 1 in the Appendix.  

 

3.4 Parameter Sweeping 

The following four parameters were swept across base, best, and worse case infection 

scenarios to investigate the significance of each parameter change on the infected student 

population: number of exogenous shocks (X and Y for on-campus and off-campus populations 

respectively), interaction factor between students ( ), screening rate ( ), and vaccination rateRstu τ  

(Ξ). The results of this parameter sweeping may reveal vital insights for administrators to take 

into consideration when policy making. Table 1 in the Appendix summarizes the parameters 

used in the model, along with their calculated values, and the method behind their calculation. 

The figures displayed track a sum of both on- and off-campus infections, detected and 

undetected separately.  
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4. Model Results 

4.1 Inter-student interaction 

Increased inter-student interaction leads to a greater peak infection number and increases 

the time necessary for the infection to peak; however it does not lead to significant differences in 

on- and off-campus infected and recovered populations. In order to see this effect, three 

inter-student R values (Rstu) were used, 1.0, 1.5, and 3.0, with an additional constant Rc of .5 

between on-campus students. When Rstu = 3.0, it takes the longest amount of time to reach the 

peak infection at approximately 50 days, and the shortest time to peak infection occurs when Rstu 

= 1.0 at around 8 days. As Rstu increases, the maximum number of concurrent infected isolated 

individuals increases. As the likelihood for infection increases, there is a significant increase in 

the overall infected students, measured by accounting for those who recovered both on and off 

campus. The Rstu = 3.0 case resulted in a total recovered student count 22x greater than the 

baseline Rstu = 1.5 case, suggesting that Rstu has a significant impact on infection levels.  In 

contrast, the best case, Rstu = 1, resulted in a 33% reduction in recovered cases from the baseline. 

As time increases, the infected population oscillates about a steady figure whose value increases 

as Rstu increases. This data shows that having low Rstu values will keep the rate of infection low, 

allowing for a more manageable amount of cases. This low Rstu value can likely be achieved 

through mask wearing, social distancing, and isolation (Chu et al., 2020). If Rstu increases due to 

a lack of safety measures, infections are predicted to increase rapidly. This will lead to increased 

cost for beds, treatment, and contact tracing. Therefore, it is essential to keep Rstu low, so that the 

infections on campus can be managed and the semester can continue to take place in person. In 

the event of a total failure to enforce those practices which can minimize inter-student viral 

transmission, it is possible that the entire student population could become infected (Figure 3).  
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 Figure 1. Rstu = 1.0              Figure 2. Rstu = 1.5  

      Figure 3. Rstu = 3.0                          Figure 4. Recovered populations for on/off campus 

 

4.2 Testing Frequency 

Graphs for screening occurring once, twice and thrice a week were recorded, and the data 

shows that increasing screening rate was found to have an extremely significant effect on 

decreasing peak infection levels. When screening was conducted once a week, the number of 

infections continued to increase even at the 100 day mark. However, when three tests were 

conducted weekly, the number of infections peaked at 8 days. The number of recovered 

individuals was 574 total with only one screening per week, compared to 113 individuals when 

three tests were conducted per week. Testing twice or three times a week results in greater 

infections off campus, while testing once a week not only results in an outbreak, but one that 

affects on-campus students disproportionately (Figure 8). This is caused by the additional Rc 

between on-campus students, so as student cases rise, on-campus students are at greater risk. As 

a result, it can be argued that testing frequency is one of the most important factors in preventing 
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infection outbreak, although increasing screening rate would involve increases in costs, both in 

terms of testing and bedding for false positives. Our model shows that to maintain infection 

levels at manageable numbers, a minimum screening rate of 2 tests/week is required.  

       Figure 5. 1 test per week        Figure 6. 2 tests per week 

                        Figure 7. 3 test per week                                   Figure 8. Recovered populations for on/off campus 

 

4.3 Exogenous Shocks 

Increasing exogenous shocks creates an increase in infection oscillations but does not 

lead to an exponential growth in peak infection numbers. To determine this, three different sets 

of exogenous shock values were analyzed: no exogenous shocks, 1 per week on campus and 3 

per week off campus, and 2 per week on campus and 6 per week off campus. As the number of 

exogenous shocks increases, the time taken for infection levels to peak is increased. It only takes 

6 days for maximum infections to occur with zero weekly shocks, while it takes 29 days with the 

maximum number of weekly shocks. Although the maximum number of infected isolated 

individuals increases with exogenous shocks, there is not an exponential increase in the number 
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of infected individuals. Therefore, it can be concluded that the number of exogenous shocks, 

while likely to cause an increase in the number of average cases, would not prompt an outbreak. 

There are also no significant changes in the number of infected, undetected individuals across the 

three cases. However, there is a large impact on the number of recovered students, with 233 

more individuals total in the maximum shock case than in the no shock case. There are more 

recovered individuals from the off-campus population in all cases except when there are no 

exogenous shocks.  The effect of exogenous shocks on off-campus versus on-campus student 

populations was compared. In the best case scenario (exogenous shocks=0), there were 

approximately 17 and 13 recovered individuals for on-campus and off-campus populations 

respectively. In the worst case scenario (~2/week on-campus and ~6/week off-campus), there 

were approximately 122 and 144 recovered individuals in the on- and off-campus populations 

respectively (see Figures A1-A4). These results demonstrate that community infections have a 

greater impact on the off-campus population, which can introduce more cases to the student body 

overall. However, overall, community infections are unlikely to cause significant outbreak 

among students.  

Figure 9. No exogenous shocks                                   Figure 10. 1/week on campus + 3/week off campus 
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   Figure 11. 2/week on campus + 6/week off campus                Figure 12. Recovered populations for on/off campus 
4.4 Vaccine Distribution 

Presence of a vaccine is hailed by many as an end to the COVID-19 pandemic, but even 

as vaccines seem to be on the horizon, their availability and distribution will be certain to pose 

challenges. Analysis of the results of varying availability of vaccines, 100, 200, and 300 doses 

per week, has provided some insight into what to expect once a vaccine is produced. Assuming 

that vaccines are distributed among students randomly, and at a continuous and constant rate 

from the beginning of the semester, they may prove to decrease student infections. Recognizing 

the high demand for vaccines, as well as the relatively low risk of college students, it is 

reasonable to expect a fairly low availability, so it would be unlikely for Duke’s undergraduate 

population to reach herd immunity until a significant time after the beginning of the semester.  

In each case below, the amount of infected students slopes downwards as more are 

vaccinated, but only in the best case scenario, 300 vaccinations per week, does the new 

inter-student infection count drop below 1 per week within the period analyzed. This is achieved 

after 11 weeks of continuous vaccinating, when approximately 83% of the student population has 

been immunized, as well as about 2.5% of the population having developed immunity from 

contracting the virus. As is clear in Figure 16, widespread immunization levels can decrease the 

overall number of cases in a semester, but immunizing over the course of the semester has a 

limited effect on the overall case count. The best case scenario still results in 106 students 

becoming infected with COVID-19, as compared to approximately 151 in the base, no-vaccine 

case. Our model may be limited, however, in its prediction of vaccine efficacy. Literature 

predicts that with an Rstu + c of 2, we should expect herd immunity to begin at approximately 50% 

vaccination (Anderson et al., 2020; Miao et al., 2010). Because our model does not account for 
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interaction between the vaccinated immune population and the susceptible population, we are 

unable to draw sound conclusions about herd immunity. 

              Figure 13. 100 vaccinations/week                                      Figure 14. 200 vaccinations/week 

 Figure 15. 300 vaccinations/week       Figure 16. Recovered populations for on/off campus 

 

5. Reflection 

In evaluating the model and its results, several strengths and weaknesses were identified. 

Among its strengths, the most important is the separation of the student population into on- and 

off-campus groups, while also modeling the interaction between the two. This is a more accurate 

representation of the actual student population at Duke and at several other colleges where 

student residential options are more varied than regular dorm-style living. Accounting for this 

separation has allowed us to tailor our containment plan to each population’s unique 

circumstances and susceptibility to infection spread.  

Another strength of the model is that it analyzes the effects of several different 

parameters. These include the screening rate, the interaction between students (which would vary 

depending on campus protocols enforced by administration), the number of exogenous shocks 
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(which would vary based on local community infection levels), and finally vaccine distribution, 

which has not been analyzed in many models so far. Evaluating the effect of changing these 

parameters helped achieve the goals specified by the initial motivation behind creating the 

model: to help the administration consider how to weigh the impact of these factors when 

implementing an infection containment plan. Sweeping across different values has allowed for 

the successful identification of increasing rates of screening and limiting student interaction 

levels as most crucial in curbing infection outbreak and spread, whereas reducing exogenous 

shocks does not have as great of an impact relative to the effect of varying other parameters. 

These results are supported by findings in Paltiel’s model, which demonstrated that keeping 

inter-student R value below 2.5 and implementing a rapid, even poorly sensitive (> 70%), test 

conducted at least every two days, would produce a modest number of containable infections 

(Paltiel et al., 2020). In addition, the effect of exogenous shocks would be lessened if this testing 

strategy was implemented (Paltiel et al., 2020). 

However, there are demerits to the model as well. First, the model does not consider the 

faculty population, which would potentially be an important source of infection since the faculty 

live primarily off campus and are more likely to be affected by exogenous shocks. Faculty also 

would not be subjected to the same rates of testing as students, which would mean that positive 

cases among faculty could go undetected for a longer amount of time. Additionally, the model 

did not take into account the financial and material resources required to sufficiently implement 

the required screening rates and accommodate the estimated isolated/quarantined population. 

Furthermore, our model does not account for the efficacy of pandemic control measures (apart 

from regulating in-person/student interaction) such as mask wearing or regular sanitization on 

limiting infection rate. While these measures would likely be more difficult to incorporate in the 

model due to their nuanced nature, it is possible that they could have a potent effect in reducing 

infection numbers, especially considering the strong advocacy for mask wearing by public health 

officials. Lastly, the model does not account for interaction between the vaccinated immune 

population and the susceptible population. Reaching herd immunity is dependent upon 

pre-existing immunity of a high proportion of individuals who interact with the susceptible 

population; thus, we are unable to make predictions regarding herd immunity from our model. 

 

6. Conclusion 
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Increased inter-student interaction (Rstu) increases the time taken to reach peak infection 

levels and produces exponentially greater maximum infection levels. The Rstu value has the 

greatest impact on the size of the infected population, and it is vital to keep this factor at the 

lowest possible level. This can be done through use of masks, social distancing, and 

self-isolation. Screening rate also has an extremely significant effect on the size of the infected 

population. Results indicate that a minimum of 2 tests per week would be required to keep the 

infections at a manageable level. Exogenous shocks, while increasing the average number of 

infections and the severity of infection oscillations, did not produce an exponential growth in 

peak infection levels. They did, however, lead to significant differences in on- and off-campus 

infected and recovered populations, demonstrating that community infections have a greater 

impact on the off-campus population but are unlikely to cause significant outbreak among 

students. Increased screening for off-campus students is recommended to account for this 

discrepancy, which would eliminate the excess costs involved with increased screening for all 

individuals. Finally, vaccination would need to take place rapidly and be distributed to 

approximately 83% of students in order to nearly eliminate new cases. The current model could 

be further improved by adding the faculty population, determining the efficacy of pandemic 

control measures on limiting infection spread, and allowing for interaction between vaccinated 

immune individuals and the susceptible population. The model could also be extended to 

estimate average costs of testing and isolation/quarantine facilities required to help the 

administration create infection containment plans.  
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Appendix 

Model Equations 

Table 1. Model Parameters 

 

 Definition Est. Value Calc. Method 

βc  Rate at which susceptible on campus 

population is contacted and infected by 

infectious population  

0.204 ρ )βc = ( + σ · Rc  

(Paltiel et al.) 

 

βstu  Basal rate at which students are contacted 

and infected by other students 

Best: 0.204 

Base: 0.306 

Worse: 0.612 

ρ )βstu = ( + σ · Rstu  

(Paltiel et al.) 

τ  Screening rate  Worst Case: 0.143 

tests/day 

(1 test/week) 

 

Base Case: 0.2857 

tests/day 

(2 tests/week) 

 

Best Case: 0.428 

tests/day 

(3 tests/week) 

Total no. of tests 

(not including 

entry tests) 

administered/no of 

weeks 

σ  Rate of symptomatic onset 0.06122 (Paltiel et al.) 
σ

σ+ρ  

δ  Death rate of symptomatic individuals 0.0092 (Benneyan et al.) 

ρ  Recovery rate 1/14 days 1/length of 

infection in days 

(Paltiel et al.) 
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μ  Rate of false positives returning to 

susceptible compartment (uninfected 

compartment) 

1/14  1/(Time to false 

positive return) 

γ  Rate of false positives going from 

susceptible to isolated (uninfected) 

compartment 

 0.2857 tests/day eτ · S  

eS  Sensitivity  80%  (from Paltiel et al. 

base) 

pS  Specificity 98%  (from Paltiel et al. 

base) 

X  Proportion of on-campus population 

infected each week due to exogenous 

shocks 

Best case: 0 

( 0 cases/week)≈  

Base case: 0.0035 

( 1 cases/week)≈  

Worst case: 0.007 

( 2 cases/week)≈  

X = S (0)on−campus

cases per week  

*calculated to 

have initial 0,1,2 

cases per week 

Assumption 

Y  Proportion of off-campus population 

infected each week due to exogenous 

shocks 

Best case: 0 

( 0 cases/week)≈  

Base case: 0.0105 

( 3 cases/week)≈  

Worst case: 0.021 

( 6 cases/week)≈  

Y = S (0)of f−campus

cases per week  

*calculated to 

have initial 0,3,6 

cases per week 

Assumption 

Rc  Average number of on-campus susceptible 

students who become infected by 

on-campus infectious students 

.5 Assumption 
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Additional Figures 
 

Fig A1. Off Campus Worst Case Exogenous Shock 2/week     Fig A2. On Campus Worst Case Exogenous Shocks 6/week 

 

 

Rstu  Average number of off-campus 

susceptible students who become infected 

by on-campus infectious students and vice 

versa  

Best case: 1 

Base case: 1.5 

Worst case: 3 

Best and worst 

case are drawn 

from Paltiel et al. - 

Rc, and the base 

case was found to 

approximate true 

results of the past 

semester 

Ξ  Number of vaccinations administered per 

week to each population (on-campus and 

off-campus) 

Best case: 100/week 

Base case: 200/week 

Worst case: 300/week 

Estimation 

ε  Effectiveness of vaccine 0.9 (Pfizer) 
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Fig A3. Off Campus Best Case Exogenous Shock 0/week         Fig A4. On Campus Best Case Exogenous Shock 0/week 

 

Table 2. Compiled Raw Data for Parameter Sweeps 

 

Total 
Recovered On Campus 

Off 
Campus 

Rstu

τ  
(per 

week) X Y 
Weekly 
Vaccinations 

Max. 
Infected 
Time 
(days) Parameter 

102.0999655 
43.9806569

8 
58.1193085

6 1 2 0.0005 0.0015 0 8 Rstu  

150.2507059 
70.4962807

7 
79.7544251

2 1.5 2 0.0005 0.0015 0 15 
Rstu  

3880.477049 
1947.86541

9 
1932.61163

1 3 2 0.0005 0.0015 0 50 
Rstu  

556.0831099 
304.087340

6 
251.995769

3 1.5 1 0.0005 0.0015 0 99 τ  

138.0297126 
63.3824010

4 
74.6473115

8 1.5 2 0.0005 0.0015 0 29 τ  

104.4448914 
44.5799529

2 
59.8649384

8 1.5 3 0.0005 0.0015 0 8 
τ  

30.34445865 
17.2292142

2 
13.1152444

4 1.5 2 0 0 0 6 Exogenous 

151.8790115 
71.4242427

9 
80.4547686

9 1.5 2 0.0005 0.0015 0 15 Exogenous 

266.1330764 
122.125095

4 144.007981 1.5 2 0.001 0.003 0 29 Exogenous 

132.5627304 
62.4083029

2 
70.1544274

4 1.5 2 0.0005 0.0015 100 15 Vaccine 

119.8658217 
57.1800049

2 
62.6858168

2 1.5 2 0.0005 0.0015 200 9 Vaccine 
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105.237671 
50.8475386

5 
54.3901323

5 1.5 2 0.0005 0.0015 300 8 Vaccine 
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