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1. Abstract

In an effort to control the spread of the Severe Acute Respiratory Syndrome Coronavirus
(SARS-CoV-2), the CDC and other national health protection agencies have developed
mathematical models to inform decisions about pandemic planning, resource allocation, and
implementation of social distancing measures and other interventions (CDC, 2020). These
modeling techniques have proved crucial when determining reopening plans for college
campuses, as they are particularly prone to the rapid spread of COVID-19. This paper seeks to
model the spread of COVID-19 on the Duke University campus using an SIR-based model in
hopes of determining the safest and most effective reopening plan for the 2021 spring semester.
Previous SIR-based models from other universities were modified to reflect Duke’s unique
on-campus and off-campus populations. The effects of varying exogenous shocks, inter-student
interaction, screening rate, and vaccination rate were analyzed using a parameter sweep to
determine the most important factors in limiting spread of the virus. It was concluded that
inter-student interaction has the greatest impact on the size of the infected population, and it is
vital to keep this number at the lowest possible level; and that screening rate has a significant
impact on the size of the infected population, and a minimum of 2 tests/week would be required
to keep the infections at a manageable level. Increasing exogenous shocks does not produce an
exponential growth in peak infection levels, but does lead to significant differences in
infected/recovered on- and off-campus populations. Finally, vaccination must occur rapidly and

be distributed to 83% of students in order to nearly eliminate new cases.

2. Background

The novel SARS-CoV-2 discovered in 2019 created a pandemic that has changed the
world. With over 1 million deaths caused by the virus, countries have gone into lockdown,
education systems have shut down, and wearing masks has become the norm.

SARS-CoV-2 is a coronavirus which causes COVID-19, a disease that can trigger a
respiratory tract infection and affect the sinuses, nose, throat, windpipe, and lungs. The virus
mainly spreads by respiratory droplets and aerosols, especially in crowded, inadequately
ventilated spaces (Centers, 2020). Research shows that the incubation period for the disease is

around 14 days (Lauer et al., 2020).
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Many new measures are being put in place in order to reduce the transmission of
SARS-CoV-2. Since the coronavirus is spread through respiratory droplets, mask usage can
reduce the R, value, or the reproduction number of the virus. Furthermore, to reduce contact with
droplets from infected individuals, people are being advised to social distance by maintaining a
minimum of 6 feet apart from each other in public spaces and to not frequent indoor places,
especially in settings where someone’s mask is likely to be taken off. Various testing methods,
such as RT-PCR tests, antigen tests, and antibody tests, have been developed for the virus, so
infected people can be immediately put into isolation if tested positive (Commissioner, 2020). At
Duke University, students are tested weekly and are required to report symptoms daily on the
Sym Mon app. Contact tracing is being used to identify students who have been in contact with
infected people, and they are quarantined for 14 days (Duke United, 2020).

In order to better understand the epidemiology of COVID-19 at Duke, an SIR-based
model that computes the theoretical number of infected people in a population over time was
developed. SIR models are compartment models which consist of susceptible, infected, and
recovered individuals. Yale University developed an SIR-based model to predict which
SARS-CoV-2 screening and isolation programs would minimize danger for US residential
universities. The study evaluated campus screening using varied testing frequency
(daily-weekly), R, values (1.5,2.5,3.5), and exogenous shock factors that accounted for
importation of additional infections. The results of the study showed that across all scenarios,
testing frequency had the most impact on outcomes.

Studying such models are crucial for university administrators to determine the safest and
most efficient way for students and faculty to return to campus. This involves considering factors
such as testing requirements, on- and off-campus student interaction, and organizing facilities
required for isolation and quarantine procedures.

Given that Duke University is currently grappling with many of the same dilemmas, this
paper aims to use an SIR-based model and kinetics-based equations to investigate the network
dynamics between student populations in order to effectively emulate the current COVID-19

pandemic at Duke.

3. Development of Model
3.1 Compartment Model
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Figure 0. Compartment Model

The compartment model developed in this paper is based on the SIR model by Paltiel et
al. (2020) at Yale. Taking inspiration from the model designed by Lopman et al. (2020) at
Emory, student populations were split into “on-campus” and “off-campus”, as data from the
Duke Today demonstrated significantly different infection rates between these populations.
Symmetric compartment models were made for both populations with a rate of infection between
on- and off-campus susceptible populations. The rate at which general students in the susceptible

population become infected by the infectious population was taken to be B, , while the rate at

stu >
which on-campus susceptible students become infected by other infected on-campus students
constitutes an additional B, rate. This B, rate accounts for the higher rate of inter-student
interaction for on-campus students. Although Duke’s report numbers show that off-campus
students had a higher rate of infection, we assumed that this number is the result of higher
exogenous shocks, not a greater level of inter-student interaction. This exogenous shock event
factor accounts for the possibility of student interactions with the surrounding community. As
such, the off-campus exogenous shock factor was increased.

For both on- and off-campus, the susceptible population accounts for students who are
uninfected and unisolated. Students who are uninfected but isolated due to contact tracing

protocol are moved to the isolated, uninfected population at a rate of y; this was done to best



SIR-Based Model of COVID-19 Transmission 4

emulate the contact tracing and isolation process at Duke. Students move back from the isolated,
uninfected population to the susceptible population at a rate of 4. Students from the susceptible
population are infected at a rate of 8, depending on on- or off-campus, and moved to the infected,
undetected pool. Exogenous shock events will also move a small proportion of students from the
susceptible population to the infected, undetected population weekly.

The infected population can move into two groups: isolated, symptomatic and isolated,
asymptomatic. The assumption was made that all symptomatic students who report their
symptoms via the Sym Mon application are immediately isolated, prior to testing, at a rate of o,
or the rate of symptom onset for infected individuals (Paltiel et al., 2020). It was assumed that all
infected, asymptomatic students discover their infection through testing, and are subsequently
put into isolation. These students are deemed infected and then isolated at a rate of 1 - Se, with
T being the rate at which individuals in the testing pool are screened for infection (Paltiel et al.,
2020), and Se being the sensitivity of the screening test. Those isolated, asymptomatic students
who eventually develop symptoms enter the isolated, symptomatic pool at the symptom onset
rate of 6. After polling on-campus and off-campus students, it was concluded that screening
occurs at the same rate for all individuals, and therefore, the same rates of isolation were used for
the on-campus and off-campus populations. Infected, undetected students can move from the
infected group to the recovered population at a recovery rate of p (Paltiel et al., 2020).

Students in the isolated, infected population move to the recovered population at a
recovery rate of p. This rate is the same for on-campus and off-campus populations. Isolated,
symptomatic individuals die at a death rate of 6 and are moved to the dead population. It was
also assumed that all recovered students become immune, and hence cannot be reinfected,
because there have only been three reported repeat COVID-19 cases worldwide (Mandavilli,
2020).

A hypothetical vaccine strategy was incorporated into our model in the case that a
vaccine becomes readily available. Students will be vaccinated, starting from day 0, from the
susceptible population and enter the vaccinated population at a vaccination rate times
effectiveness of vaccine, or Z* ¢. We assume that 90% of those who receive the vaccine will
become immune, based on recent data released from Pfizer predicting 90% efficacy of the
vaccine (“Pfizer”, 2020). It was also assumed that there would be an equal amount of vaccines

available to the on- and off-campus student populations.



SIR-Based Model of COVID-19 Transmission 5

3.2 Kinetic equations

3.2.1 Susceptible

Susceptible (t+1) = Susceptible(t) -New Infected-New IUs +Returning [Us -Exogenous Shocks
-New Vaccinated
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The susceptible compartment represents the uninfected individuals who are capable of being

infected at rate A. These uninfected individuals are isolated as a result of false positive tests at
rate T - (1 —Sp). Those isolated in this manner return to campus at rate p. X proportion of
students are infected each week due to exogenous shocks. In the trials with vaccine availability,
= - ¢ (the vaccination rate multiplied by its efficacy) students are removed from the susceptible

group weekly.

3.2.2 Infected, Undetected

Undetected(t+1)= Undetected(t) -Symptomatic -Recoveries +New Infections -New [A
+Exogenous Shocks

U+t D) =U(0) —c-U) —p-Ui(t) +X&-Ui() ~U(t—1) 1 -Se+Z;-§(1)
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Zon-campus =X, and Z g compus = Y
The infected, undetected population represents individuals who have contracted the virus, but
have not been identified via testing. This population increases with new infections at rate A, .
Students develop symptoms at rate ¢, and are promptly isolated. Those who remain

asymptomatic are isolated at rate 1 - Se through true positive test results. Individuals in this

compartment recover at rate p.
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3.2.3 Isolated, Uninfected

Isolated . r...q(tt1)=Isolated . . ..(t) - Returning IUs + New IUs

IU,t+ 1) =1U0() —pn-1U() +S;(t—1)-t-(1—Sp)

The isolated, uninfected population represents the individuals who have not contracted the virus,
but are placed in isolation at rate T - (1 —Sp) due to false positive tests. These students leave

isolation and return to normal activity at rate p.

3.2.4 Isolated, Asymptomatic
Isolated,,,omaric (t+1)= Isolated
TA;(t+1)=14t) —o-1A,(t) —p-14,(t) +U(t—1) 1 -Se

(t) - Symptomatic - Recoveries + New [As

asymptomatic

The isolated, asymptomatic population represents students who have been isolated at rate 1 - Se
as a result of true positive tests. Individuals who develop symptoms at rate ¢ remain isolated,

but are placed in the isolated, symptomatic compartment. These individuals recover at rate p.

3.2.5 Isolated, Symptomatic
Isolated, i maic(t+1)= Isolated
IS(t+1)=1S,(f) —p-1S,(t) =& -1S(t) +c[lA4,(t)+ U ()]

mpromatic(t) - Recoveries - Deaths + New Symptomatic
The isolated, symptomatic population represents students who have been isolated at rate ¢ as a

result of symptom onset. These individuals recover at rate p and die at rate o .

3.2.6 Recovered

Recovered(t+1)= Recovered(t) + New Recoveries

R(t+1)=R(t) +pllA() + U +1S,(0)]

The recovered population represents students from the isolated, asymptomatic; undetected; and

isolated, symptomatic populations who have been infected and subsequently recover at rate p.

3.2.7 Vaccinated
Vaccinated(t+1)= Vaccinated(t) +New Vaccinations
Vg+1)=V,+E-¢
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The vaccinated population represents students who gain immunity with = - ¢ newly vaccinated

individuals each week.

3.2.8 Deaths
Deaths(t+1)= Deaths(t) + New Deaths
D(t+1)=DJt) +3-1S,¢)

The dead population increases at death rate .

3.2.9 Total Population
P=%S8+U,+1U, + 14, +IS; + R, + D, +V,

The sum of all the populations described above, both on-campus and off-campus, make up the

total population of interest: Duke students.

3.3 Universal Constants

In order to better compare the variables over which we will sweep, some factors must be
kept constant. Initial population was set to be 4000 students spread evenly across on and off
campus, 11 of which are infected but undetected (“Duke COVID Testing Tracker”, 2020) (6 on
campus, 5 off). Baseline calculations for death rate, recovery rate, symptom onset rate, as well as

sensitivity and specificity of COVID-19 tests are cited in Table 1 in the Appendix.

3.4 Parameter Sweeping

The following four parameters were swept across base, best, and worse case infection
scenarios to investigate the significance of each parameter change on the infected student
population: number of exogenous shocks (X and Y for on-campus and off-campus populations

respectively), interaction factor between students (R, ), screening rate (T ), and vaccination rate

stu
(E). The results of this parameter sweeping may reveal vital insights for administrators to take
into consideration when policy making. Table 1 in the Appendix summarizes the parameters
used in the model, along with their calculated values, and the method behind their calculation.
The figures displayed track a sum of both on- and off-campus infections, detected and

undetected separately.
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4. Model Results

4.1 Inter-student interaction

Increased inter-student interaction leads to a greater peak infection number and increases
the time necessary for the infection to peak; however it does not lead to significant differences in
on- and off-campus infected and recovered populations. In order to see this effect, three
inter-student R values (Ry,) were used, 1.0, 1.5, and 3.0, with an additional constant R, of .5
between on-campus students. When R, = 3.0, it takes the longest amount of time to reach the
peak infection at approximately 50 days, and the shortest time to peak infection occurs when R,
= 1.0 at around 8 days. As Ry, increases, the maximum number of concurrent infected isolated
individuals increases. As the likelihood for infection increases, there is a significant increase in
the overall infected students, measured by accounting for those who recovered both on and off

campus. The R, = 3.0 case resulted in a total recovered student count 22x greater than the

stu
baseline Ry, = 1.5 case, suggesting that R, has a significant impact on infection levels. In
contrast, the best case, Ry, = 1, resulted in a 33% reduction in recovered cases from the baseline.
As time increases, the infected population oscillates about a steady figure whose value increases
as R, increases. This data shows that having low R, values will keep the rate of infection low,
allowing for a more manageable amount of cases. This low R, value can likely be achieved
through mask wearing, social distancing, and isolation (Chu et al., 2020). If R, increases due to
a lack of safety measures, infections are predicted to increase rapidly. This will lead to increased
cost for beds, treatment, and contact tracing. Therefore, it is essential to keep Ry, low, so that the
infections on campus can be managed and the semester can continue to take place in person. In

the event of a total failure to enforce those practices which can minimize inter-student viral

transmission, it is possible that the entire student population could become infected (Figure 3).



SIR-Based Model of COVID-19 Transmission 9

16 1 [ —— Infected (Undetected)
—— Infected (Isolated)

—=—- Max Infected

— Infected (Undetected)
— Infected (Isolated)
===~ Max Infected

20
14 -

12 4

15 1
10 +

10

Population
Population

T T T T T T
T T T T T T 0 20 40 60 80 100
0 20 40 60 80 100 Time, Days

Time, Days

Figure 1. R, = 1.0 Figure 2. R, = 1.5

1000 1~ —— Infected (Undetected)
—— Infected (Isolated)
—-—- Max Infected

Inter-Student R Value

B oncampus [ Off Campus

500 2000

1500

@

=]

=1
L

Population

1000

&
=]
=3
!

Recovered

500
200 +

0 ==
1 1.5 3
o]
0 20 P 50 80 100 R value
Time, Days
Figure3. R, = 3.0 Figure 4. Recovered populations for on/off campus

4.2 Testing Frequency

Graphs for screening occurring once, twice and thrice a week were recorded, and the data
shows that increasing screening rate was found to have an extremely significant effect on
decreasing peak infection levels. When screening was conducted once a week, the number of
infections continued to increase even at the 100 day mark. However, when three tests were
conducted weekly, the number of infections peaked at 8 days. The number of recovered
individuals was 574 total with only one screening per week, compared to 113 individuals when
three tests were conducted per week. Testing twice or three times a week results in greater
infections off campus, while testing once a week not only results in an outbreak, but one that
affects on-campus students disproportionately (Figure 8). This is caused by the additional R,
between on-campus students, so as student cases rise, on-campus students are at greater risk. As

a result, it can be argued that testing frequency is one of the most important factors in preventing
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infection outbreak, although increasing screening rate would involve increases in costs, both in
terms of testing and bedding for false positives. Our model shows that to maintain infection

levels at manageable numbers, a minimum screening rate of 2 tests/week is required.
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4.3 Exogenous Shocks

Increasing exogenous shocks creates an increase in infection oscillations but does not
lead to an exponential growth in peak infection numbers. To determine this, three different sets
of exogenous shock values were analyzed: no exogenous shocks, 1 per week on campus and 3
per week off campus, and 2 per week on campus and 6 per week off campus. As the number of
exogenous shocks increases, the time taken for infection levels to peak is increased. It only takes
6 days for maximum infections to occur with zero weekly shocks, while it takes 29 days with the
maximum number of weekly shocks. Although the maximum number of infected isolated

individuals increases with exogenous shocks, there is not an exponential increase in the number
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of infected individuals. Therefore, it can be concluded that the number of exogenous shocks,
while likely to cause an increase in the number of average cases, would not prompt an outbreak.
There are also no significant changes in the number of infected, undetected individuals across the
three cases. However, there is a large impact on the number of recovered students, with 233
more individuals total in the maximum shock case than in the no shock case. There are more
recovered individuals from the off-campus population in all cases except when there are no
exogenous shocks. The effect of exogenous shocks on off-campus versus on-campus student
populations was compared. In the best case scenario (exogenous shocks=0), there were
approximately 17 and 13 recovered individuals for on-campus and off-campus populations
respectively. In the worst case scenario (~2/week on-campus and ~6/week off-campus), there
were approximately 122 and 144 recovered individuals in the on- and off-campus populations
respectively (see Figures A1-A4). These results demonstrate that community infections have a
greater impact on the off-campus population, which can introduce more cases to the student body
overall. However, overall, community infections are unlikely to cause significant outbreak

among students.
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4.4 Vaccine Distribution

Presence of a vaccine is hailed by many as an end to the COVID-19 pandemic, but even
as vaccines seem to be on the horizon, their availability and distribution will be certain to pose
challenges. Analysis of the results of varying availability of vaccines, 100, 200, and 300 doses
per week, has provided some insight into what to expect once a vaccine is produced. Assuming
that vaccines are distributed among students randomly, and at a continuous and constant rate
from the beginning of the semester, they may prove to decrease student infections. Recognizing
the high demand for vaccines, as well as the relatively low risk of college students, it is
reasonable to expect a fairly low availability, so it would be unlikely for Duke’s undergraduate
population to reach herd immunity until a significant time after the beginning of the semester.

In each case below, the amount of infected students slopes downwards as more are
vaccinated, but only in the best case scenario, 300 vaccinations per week, does the new
inter-student infection count drop below 1 per week within the period analyzed. This is achieved
after 11 weeks of continuous vaccinating, when approximately 83% of the student population has
been immunized, as well as about 2.5% of the population having developed immunity from
contracting the virus. As is clear in Figure 16, widespread immunization levels can decrease the
overall number of cases in a semester, but immunizing over the course of the semester has a
limited effect on the overall case count. The best case scenario still results in 106 students
becoming infected with COVID-19, as compared to approximately 151 in the base, no-vaccine
case. Our model may be limited, however, in its prediction of vaccine efficacy. Literature

predicts that with an R of 2, we should expect herd immunity to begin at approximately 50%

stu+c

vaccination (Anderson et al., 2020; Miao et al., 2010). Because our model does not account for
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interaction between the vaccinated immune population and the susceptible population, we are

unable to draw sound conclusions about herd immunity.
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5. Reflection

In evaluating the model and its results, several strengths and weaknesses were identified.
Among its strengths, the most important is the separation of the student population into on- and
off-campus groups, while also modeling the interaction between the two. This is a more accurate
representation of the actual student population at Duke and at several other colleges where
student residential options are more varied than regular dorm-style living. Accounting for this
separation has allowed us to tailor our containment plan to each population’s unique
circumstances and susceptibility to infection spread.

Another strength of the model is that it analyzes the effects of several different
parameters. These include the screening rate, the interaction between students (which would vary

depending on campus protocols enforced by administration), the number of exogenous shocks
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(which would vary based on local community infection levels), and finally vaccine distribution,
which has not been analyzed in many models so far. Evaluating the effect of changing these
parameters helped achieve the goals specified by the initial motivation behind creating the
model: to help the administration consider how to weigh the impact of these factors when
implementing an infection containment plan. Sweeping across different values has allowed for
the successful identification of increasing rates of screening and limiting student interaction
levels as most crucial in curbing infection outbreak and spread, whereas reducing exogenous
shocks does not have as great of an impact relative to the effect of varying other parameters.
These results are supported by findings in Paltiel’s model, which demonstrated that keeping
inter-student R value below 2.5 and implementing a rapid, even poorly sensitive (> 70%), test
conducted at least every two days, would produce a modest number of containable infections
(Paltiel et al., 2020). In addition, the effect of exogenous shocks would be lessened if this testing
strategy was implemented (Paltiel et al., 2020).

However, there are demerits to the model as well. First, the model does not consider the
faculty population, which would potentially be an important source of infection since the faculty
live primarily off campus and are more likely to be affected by exogenous shocks. Faculty also
would not be subjected to the same rates of testing as students, which would mean that positive
cases among faculty could go undetected for a longer amount of time. Additionally, the model
did not take into account the financial and material resources required to sufficiently implement
the required screening rates and accommodate the estimated isolated/quarantined population.
Furthermore, our model does not account for the efficacy of pandemic control measures (apart
from regulating in-person/student interaction) such as mask wearing or regular sanitization on
limiting infection rate. While these measures would likely be more difficult to incorporate in the
model due to their nuanced nature, it is possible that they could have a potent effect in reducing
infection numbers, especially considering the strong advocacy for mask wearing by public health
officials. Lastly, the model does not account for interaction between the vaccinated immune
population and the susceptible population. Reaching herd immunity is dependent upon
pre-existing immunity of a high proportion of individuals who interact with the susceptible

population; thus, we are unable to make predictions regarding herd immunity from our model.

6. Conclusion
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Increased inter-student interaction (R,,) increases the time taken to reach peak infection
levels and produces exponentially greater maximum infection levels. The Ry, value has the
greatest impact on the size of the infected population, and it is vital to keep this factor at the
lowest possible level. This can be done through use of masks, social distancing, and
self-isolation. Screening rate also has an extremely significant effect on the size of the infected
population. Results indicate that a minimum of 2 tests per week would be required to keep the
infections at a manageable level. Exogenous shocks, while increasing the average number of
infections and the severity of infection oscillations, did not produce an exponential growth in
peak infection levels. They did, however, lead to significant differences in on- and off-campus
infected and recovered populations, demonstrating that community infections have a greater
impact on the off-campus population but are unlikely to cause significant outbreak among
students. Increased screening for off-campus students is recommended to account for this
discrepancy, which would eliminate the excess costs involved with increased screening for all
individuals. Finally, vaccination would need to take place rapidly and be distributed to
approximately 83% of students in order to nearly eliminate new cases. The current model could
be further improved by adding the faculty population, determining the efficacy of pandemic
control measures on limiting infection spread, and allowing for interaction between vaccinated
immune individuals and the susceptible population. The model could also be extended to
estimate average costs of testing and isolation/quarantine facilities required to help the

administration create infection containment plans.
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Appendix
Model Equations
Table 1. Model Parameters
Definition Est. Value Calc. Method
B. | Rate at which susceptible on campus 0.204 B.=(pt+o) R
population is contacted and infected by (Paltiel et al.)
infectious population
By, |Basal rate at which students are contacted | Best: 0.204 By = (p+0) Ry,
and infected by other students Base: 0.306 (Paltiel et al.)
Worse: 0.612

T Screening rate

Worst Case: 0.143
tests/day
(1 test/week)

Total no. of tests
(not including
entry tests)

administered/no of

Base Case: 0.2857 weeks

tests/day

(2 tests/week)

Best Case: 0.428

tests/day

(3 tests/week)
c Rate of symptomatic onset 0.06122 (Paltiel et al.)
) Death rate of symptomatic individuals 0.0092 (Benneyan et al.)
p Recovery rate 1/14 days 1/length of

infection in days

(Paltiel et al.)
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students who become infected by

on-campus infectious students

n Rate of false positives returning to 1/14 1/(Time to false
susceptible compartment (uninfected positive return)
compartment)

Y Rate of false positives going from 0.2857 tests/day T Se
susceptible to isolated (uninfected)
compartment

Se | Sensitivity 80% (from Paltiel et al.

base)

Sp | Specificity 98% (from Paltiel et al.

base)

X | Proportion of on-campus population Best case: 0 X= %‘

on—campus
infected each week due to exogenous (=0 cases/week) *calculated to
shocks Base case: 0.0035 have initial 0,1,2
(=1 cases/week) cases per week
Worst case: 0.007 Assumption
(=2 cases/week)
Y | Proportion of off-campus population Best case: 0 Y = %
of f—campus
infected each week due to exogenous (=0 cases/week) *caleulated to
shocks Base case: 0.0105 have initial 03,6
(=3 cases/week)
cases per week
Worst case: 0.021 Assumption
(=6 cases/week)
R. | Average number of on-campus susceptible | .5 Assumption
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R, | Average number of off-campus Best case: 1 Best and worst
susceptible students who become infected | Base case: 1.5 case are drawn
by on-campus infectious students and vice | Worst case: 3 from Paltiel et al. -
versa R., and the base

case was found to
approximate true

results of the past

semester
Z | Number of vaccinations administered per | Best case: 100/week Estimation
week to each population (on-campus and | Base case: 200/week
off-campus) Worst case: 300/week
€ Effectiveness of vaccine 0.9 (Pfizer)
Additional Figures
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Fig Al. Off Campus Worst Case Exogenous Shock 2/week  Fig A2. On Campus Worst Case Exogenous Shocks 6/week
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Fig A4.

Table 2. Compiled Raw Data for Parameter Sweeps

T
Total Off 2 | &
Recovered  On Campus Campus stu week)
43.9806569 58.1193085
102.0999655 8 6 1 2
70.4962807 79.7544251
150.2507059 7 2 1.5 2
1947.86541 1932.61163
3880.477049 9 1 3 2
304.087340 251.995769
556.0831099 6 3 15 1
63.3824010 74.6473115
138.0297126 4 8 1.5 2
44.5799529 59.8649384
104.4448914 2 8 1.5 3
17.2292142 13.1152444
30.34445865 2 4 1.5 2
71.4242427 80.4547686
151.8790115 9 9 1.5 2
122.125095
266.1330764 4 144.007981 1.5 2

62.4083029 70.1544274
132.5627304 2 4 15 2

57.1800049 62.6858168
119.8658217 2 2 15 2

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.0005

0.001

0.0005

0.0005

21

Population
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— Infected (Isolated)

T T
20 40

T U T
60 80 100

Time, Days

On Campus Best Case Exogenous Shock 0/week

Y

0.0015

0.0015

0.0015

0.0015

0.0015

0.0015

0.0015

0.003

0.0015

0.0015

Weekly
Vaccinations

100

200
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Infected

Time

(days) Parameter

R
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99 t
29 t

] T

6 Exogenous

15 Exogenous

29 Exogenous

15 Vaccine

9 Vaccine




SIR-Based Model of COVID-19 Transmission

50.8475386 54.3901323
105.237671 5 5 15 2

0.0005

0.0015

300

22

8 'Vaccine



File - /lUsers/max/Desktop/BME260/PBL2/DukeModel .py

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

from scipy.integrate import odeint

T_end = 100 # In Days
# ON CAMPUS VARIABLES

Susceptible_c = np.zeros(T_end)
10 Susceptible_c[0] = 1996

ooo~NOOULTEWN B

12 Undetected_c = np.zeros(T_end)
13 Undetected _c[0] = 6

15 Iso_un_c = np.zeros(T_end) # false pos
16 Iso_in_c = np.zeros(T_end) # true pos
17 Sympt_c = np.zeros(T_end) # Symptomatic
18 Vaccinated_c = np.zeros(T_end)

19 Recovered_c = np.zeros(T_end)

20 Deaths_c = np.zeros(T_end)

22 # OFF CAMPUS VARIABLES
23 Susceptible_o = np.zeros(T_end)
24 Susceptible_o[0] = 1995

26 Undetected_o = np.zeros(T_end)
27 Undetected _o[@] = 5

29 Iso_un_o = np.zeros(T_end) # false pos
30 Iso_in_o = np.zeros(T_end) # true pos
31 Sympt_o = np.zeros(T_end) # Symptomatic
32 Recovered_o = np.zeros(T_end)

33 Vaccinated_o = np.zeros(T_end)

34 Deaths_o = np.zeros(T_end)

36 totSusceptible = np.zeros(T_end)
37 totUndetected = np.zeros(T_end)

39 death = 0.00004

40 recovery_rate = (1 / 14)

41 symptom_onset = 0.06122

42 mu = (1 / 14) # false positives returned
43 sensitivity = .8

44 specificity = .98

45 vaccineEfficacy = .9 #

46 vaccineDate = 0

48 # SWEEP VARIABLES
49 R_stu_range = np.array([1, 1.5, 2.5])
50 R.c = .5
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51
52
53
54

55
56
57

58
59
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

screening_range = np.array([1, 2, 3]) / 7 # days per week

X_range = np.array([0, .0035, .007]1) / 7 # infections per
week
Y_range = np.array([0, .0105, .021]) / 7

VaccineDist = np.array([50,100,150, 250]1) / 7 # Daily
vaccine distribution

dataFile = open("CompiledData.csv", "w")
dataFile.write("Total Recovered, On Campus, Off Campus,
R_stu, Screening, X, Y, Vaccinations, Max Infected Time \n
||)

def InitializeVars():
# ON CAMPUS VARIABLES
Susceptible_c = np.zeros(T_end)
Susceptible_c[0] = 2000

Undetected_c = np.zeros(T_end)
Undetected_c[0] = 6

Iso_un_c = np.zeros(T_end) # false pos
Iso_in_c = np.zeros(T_end) # true pos
Sympt_c = np.zeros(T_end) # Symptomatic
Vaccinated_c = np.zeros(T_end)
Recovered_c = np.zeros(T_end)

Deaths_c = np.zeros(T_end)

# OFF CAMPUS VARIABLES
Susceptible_o = np.zeros(T_end)
Susceptible_o[0] = 2000

Undetected_o = np.zeros(T_end)
Undetected_o[0] = 5

Iso_un_o = np.zeros(T_end) # false pos
Iso_in_o = np.zeros(T_end) # true pos
Sympt_o = np.zeros(T_end) # Symptomatic
Recovered_o = np.zeros(T_end)
Vaccinated_o = np.zeros(T_end)

Deaths_o = np.zeros(T_end)

totSusceptible = np.zeros(T_end)

totUndetected = np.zeros(T_end)
print("cleared")

def plot(Susceptible, Undetected, Symptomatic, Recovered,
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96
97
98
99
100

101
102
103
104
105
106
107
108
109
110
111
112

113

114

115

116

117
118

119

120

121
122
123
124
125
126
127
128

129
130
131
132
133
134

Dead, Fp, Tp, t, name, dir, sweptVar, maxInfected):

fig = plt.figure(num=1, clear=True)

ax = fig.add_subplot(1, 1, 1)

# Plot using red circles

# ax.plot(t, G, 'b-', label='0Oral OP Concentration (ug
/L)', markevery=10)

# ax.plot(t, U, 'g-', label='Uninfected')

ax.plot(t, A, 'b-', label='Undetected (Asymptomatic)')
ax.plot(t, S, 'r-', label='Isolated (Symptomatic)')
#ax.plot(t, R, 'm-', label='Recovered')

#ax.plot(t, Fp, 'c-', label='Isolated (Uninfected)')
ax.plot(t, Tp, 'y-', label='Isolated (Asymptomatic)')
ax.plot(t, D, 'k-', label='Dead')

totalInfectedIsolated = np.array([Symptomatic, Tpl).
sum(axis=0)

totalVaccinated = np.array([Vaccinated_o, Vaccinated_c
1).sum(axis=0)

totalSusceptible = np.array([Susceptible_c,
Susceptible_o]).sum(axis=0)

ax.plot(t, Undetected, 'g-', label='Infected (
Undetected) ')

ax.plot(t, totalInfectedIsolated, 'r-', label='
Infected (Isolated)')

if maxInfected:

plt.axvline(x=maxInfected, color='r', ls="--",

label="Max Infected")

""rax.plot(t, totalVaccinated, 'b-', label="Vaccinated

II)
ax.plot(t, totalSusceptible, 'k-', label="Susceptible
1] ) mimn

# Set labels and turn grid on

ax.set(xlabel="'Time, Days', ylabel=r'Population')

ax.grid(True)

ax. legend(loc="best")

# Use space most effectively

fig.tight_layout()

fig.savefig("{}/{}_{3}.png".format(dir, name.replace(
', '_'), sweptVar))

fig.show()

def OnCampus(t, R_stu, screening, X, vaccineDist):
infectedFrac = (
totUndetected[t] / (totSusceptible[t] +

totUndetected([t])) # Fraction of non-isolated students
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134
135
136

137
138

139

140
141
142
143

144
145
146
147
148
149

150

151
152
153
154
155
156

157
158

159
160
161
162

163
164

165
166

infected

infectedFrac_c = Undetected_c[t] / (Susceptible_c[t
] + Undetected_c(t]) # Fraction of on-campus non-isolated
students infected

Beta_stu = (recovery_rate + symptom_onset) *x R_stu #
Each student to each student

Beta_c = (recovery_rate + symptom_onset) *x R_c #
Between on campus students

if t % 7 == 0 and Susceptible_c[t] >= X:
X =X
# print("New Infections On Campus: {:.3}".format(
Iso_in_c[t]+Sympt_c[t]))
else:
X =0

# print(infectedFrac, infectedFrac_c)

Susceptible_c[t + 1] = Susceptible_c[t] * (1 -
Beta_stu *x infectedFrac - Beta_c * infectedFrac_c) \
- Susceptible_c[t - 1] %
screening x (1 - specificity) + mu % Iso_un_c[t] - xx
Susceptible_c[t] \
- vaccineDist *
vaccineEfficacy x (t>vaccineDate)

#print(totSusceptible[t])
Undetected_c[t + 1] = Undetected_c[t] * (1 -
symptom_onset - recovery_rate) \
+ Susceptible_c[t] *x (Beta_stu
* infectedFrac + Beta_c * infectedFrac_c)\
- Undetected_c[t - 1] x*
screening x sensitivity + xxSusceptible_c[t]

Iso un_c[t + 1] = Iso_un_c[t] *x (1 - mu) +
Susceptible_c[t - 1] * screening * (1 - specificity)

Iso_in_c[t + 1] = Iso_in_c[t] * (1 - symptom_onset -
recovery_rate) + Undetected_c[t - 1] * screening x
sensitivity

Sympt_c[t + 1] = Sympt_c[t] * (1 - recovery_rate -
death) + symptom_onset *x (Iso_in_c[t] + Undetected_c[t])

Vaccinated_c[t + 1] = Vaccinated_c[t] + vaccineDist x*
vaccineEfficacyx (t>vaccineDate)

Recovered_c[t + 1] = Recovered_c[t] + recovery_rate
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166
167
168
169
170
171
172
173
174
175

176
177
178
179
180

181
182

183
184
185

186
187
188
189
190
191
192
193
194
195
196

197
198

199
200

201

* (Iso_in_c[t] + Undetected_c[t] + Sympt_cl[t])

Deaths_c[t + 1] = Deaths_c[t] + death x Sympt_c[t]

if Susceptible_c[t+1] <= 0:
Susceptible_c[t] = 0

# 1if t % 21 == 0:
# print("True Pos:{}, Asympt: {}, Sympt: {}".format(
Iso_in_c[t], Undetected_c[t], Sympt_c[t]))

def OffCampus(t, R_stu, screening, Y, vaccineDist):
infectedFrac = (
totUndetected[t] / (totSusceptible[t] +
totUndetected[t])) # Fraction of non-isolated students
infected

Beta_stu = (recovery_rate + symptom_onset) x R_stu #
Each student to each student

if t % 7 == 0 and Susceptible_o[t] >= Y:
# print("New Infections Off Campus: {}".format(
Iso_in_o[t]+Sympt_o[t]))
y =Y
else:
y =20

Susceptible_o[t + 1] = Susceptible_o[t] * (
1 - Beta_stu *x infectedFrac) - Susceptible_ol[t
- 1] *x screening *x (1 - specificity) + \
mu * Iso_un_ol[t] - yx
Susceptible_o[t] - vaccineDist xvaccineEfficacy *x (t>
vaccineDate)

Undetected_o[t + 1] = Undetected_ol[t] * (1 -
symptom_onset - recovery_rate) + \
Beta_stu * Susceptible_ol[t] *
infectedFrac \
- Undetected_o[t - 1] *
screening x sensitivity + y*Susceptible_o[t]

Iso_un_olt + 1] = Iso_un_olt]l * (1 — mu) +
Susceptible_o[t - 1] * screening * (1 - specificity)

Iso_in_o[t + 1] = Iso_in_o[t] * (1 - symptom_onset -
recovery_rate) + Undetected_o[t - 1] * screening x*
sensitivity
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202

203
204

205
206

207
208
209
210
211
212

213

214
215
216

217
218
219

220
221
222
223
224
225

226
227
228
229
230
231
232
233
234
235
236

237

Sympt_o[t + 1] = Sympt_ol[t] * (1 - recovery_rate -
death) + symptom_onset x (Iso_in_ol[t] + Undetected_ol[t])

Vaccinated_o[t + 1] = Vaccinated ol[t] +
vaccineEfficacy * vaccineDist * (t>vaccineDate)

Recovered_o[t + 1] = Recovered_o[t] + recovery_rate
* (Iso_in_ol[t] + Undetected_ol[t] + Sympt_ol[t])

Deaths_o[t + 1] = Deaths_ol[t] + death *x Sympt_o[t]

if Susceptible_o[t+1] <= 0:
Susceptible_o[t] = 0
if (Susceptible_c[t] * (Beta_stu *x infectedFrac)) <= .
01:
print("No new growth when Vaccinated: {}\n
Recovered: {}"
.format(Vaccinated_o[t], Recovered_o[t] ))
# 1if t % 21 == 0:
# print("True Pos:{}, Asympt: {}, Sympt: {}".format(
Iso_in_o[t], Undetected o[t], Sympt_o[t]))

def Model (R_stu, screening, X, Y, vaccineDist, dir,
sweptVar):

time = range(@, T_end)
for t in time[0:T_end - 1]:

totSusceptible[t] = Susceptible_c[t] +
Susceptible_o[t]

totUndetected[t] = Undetected c[t] + Undetected ol
t]

OnCampus(t, R_stu, screening, X, vaccineDist)

OffCampus(t, R_stu, screening, Y, vaccineDist)

maxInfected = np.argmax(np.array([Undetected_c,
Undetected_o,
Iso_in_o, Iso_in_c,
Sympt_o,Sympt_c]).sum(axis=0))
print("Max Infected at {}".format(maxInfected))

print("Total Recovered {} On Campus: {}, Off Campus {}
\n R:{}, Screening:{}, X:{}, Y:{},Vaccine : {} per week"
.format(Recovered_c[99] + Recovered_o[99],
Recovered_c[99],
Recovered_o[99],
R_stu, screening, X, Y, vaccineDistx*7))
newData = ([Recovered_c[99] + Recovered_o[99],
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237 Recovered_c[99], Recovered_o[99], R_stu, screeningx7, X, Y

238 vaccineDist * vaccineEfficacyx7,
maxInfected])

239

240 newData = str(newData).replace("[", "").replace("]",
")

241 dataFile.write(newData+"\n")

242

243 campusData = (Susceptible_c, Undetected_c, Sympt_c,
Recovered_c, Deaths_c, Iso_un_c, Iso_in_c)

244 offCampusData = (Susceptible_o, Undetected_o, Sympt_o
, Recovered_o, Deaths_o, Iso_un_o, Iso_in_o)

245

246 plot(Susceptible_c, Undetected_c, Sympt_c, Recovered_c
, Deaths_c, Iso_un_c, Iso_in_c, time, "On Campus",

247 dir, sweptVar, 0)

248 plot(Susceptible_o, Undetected_o, Sympt_o, Recovered_o
, Deaths_o, Iso_un_o, Iso_in_o, time, "Off Campus",

249 dir, sweptVar, 0)

250 plot(np.add(Susceptible_c, Susceptible_o),

251 np.add(Undetected_c, Undetected_o),

252 np.add(Sympt_c, Sympt_o),

253 np.add(Recovered_c, Recovered_o),

254 np.add(Deaths_c, Deaths_o),

255 np.add(Iso_un_c, Iso_un_o),

256 np.add(Iso_in_c, Iso_in_o),

257 time, "Overall Data", dir, sweptVar, maxInfected)

258 InitializeVars()

259

260

261 swept = int(input("Select Sweep Variable \n 1) Inter-
Student R \n 2) Screening Frequency \n 3) Exogenous Shocks

\n "
262 "4) Vaccine Availibility\n 5)All of the
Above\n"))
263
264
265 def Sweep(sweepVar):
266 if sweepVar ==
267 for r in R_stu_range:
268 Model(r, screening_rangel[1], X_rangel[1],
Y_range[1], 0, "R_Stu", "r_{}".format(r))
269
270 elif sweepVar ==
271 for screen in screening_range:
272 Model(R_stu_range[1], screen, X_rangel1],
Y_range([1l], @, "Screening", "Screening_{}".format(screen
* 7))
273 elif sweepVar ==
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274 for shock in range(0, 3):

275 Model(R_stu_range[1], screening_range[1],
X_range[shock], Y_rangel[shock], @, "Exogenous",

276 "ShockLevel {}".format(shock))

277 elif sweepVar ==

278 for vaccineDist in VaccineDist:

279 print(vaccineDist)

280 Model(R_stu_range[1l], screening_rangel[1],
X_range([1l], Y_rangel[l], vaccineDist, "Vaccine",

281 "Vaccine_{}".format(vaccineDist x 7))

282

283

284 if swept ==

285 for sweepVar in range(1, 5):

286 Sweep (sweepVar)

287 else:

288 Sweep (swept)

289

290 dataFile.close()

291
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