

Photovoltaic Soiling Sensor

PRATT SCHOOL of ENGINEERING

Edem Ahorlu, Marcos Arias, Daniel Dequech, Tim Ho, Rahul Prakash Team Solsor, Duke University, Pratt School of Engineering, Durham, NC

Design Problem

To create a sensor that detects soiling levels on industrial solar panels to maximize cleaning efficiency, thus minimizing solar energy loss.

Background and Motivation

Device

The design uses photoresistors to compare the intensity of light through clean and soiled halves of a glass pane that simulates the surfaces of nearby solar panels.

Testing Results

Results show a linear correlation between voltage and soiling loss, indicating that soiling-induced photoresistor variation is a reliable method to quantify soiling levels.

Graph 1. Standard Calibration Line for Sensor

<u>% Change in Voltage = 17.61 * (% Soiling Loss) - 8.05</u>

Soiling is defined as the accumulation of dirt, dust, and other pollutant particles onto the surface of solar panels (Figure 1).

- Soiling leads to \$670,000,000 losses annually ulletin the field of solar energy¹
- Current sensors cost > $$5,000^2$

Design Criteria

Design Criteria	Target Value		
Cost	≤ \$500		
Accuracy	±5% of soiling level	1. All and the second se	
Size	< 10 ft ³ (avg. car trunk size)		
Power Source	0% drawn from solar panel		
Ease of Use	Works with any size/mounting variation of solar panel		
Durability	 Weatherproof (water, dust, wind) Resistant to high temperatures (250 °F) Product lifetime ≥ 1 year 		
Position	0% sunlight blockage		
Precision	2 significant figures		
Design Components			

Figure 2. Exploded View of Design Assembly

<u>Components:</u>

- Glass pane
- 2. Weatherproof box
- Photoresistor circuit
- 4. Arduino with Bluetooth
- module Servo motor with 5.
- acrylic clean panel cover and weatherproof cover
- 9V battery 6.
- 7. Weatherproof box cap

Implementation:

- Solar panel
- Velcro for mounting
- Soiling sensor
- 4. Wireless data
 - transmission through Adafruit Bluetooth LE Shield and Adafruit app

Equation 1. Best Fit Calibration Line

Criteria	Test/Method	Result
Durability	 Waterproof Water submersion test (measured volume penetrated) Windproof Force test (simulated force with weights, measured force with scales and force meters) Heatproof Heat test (heated device in oven at 140° F) 	 Minimal leakage from corners and top, ~0.5 mL water seeped from sides Withstands 1.835 lbs vertically; 20 lbs horizontally Minimal warping, electronics remain functional
Position	 Sunlight blockage Measured shaded area with measuring tape (% shaded) 	0% blockage of light

Figure 3. Final Design Assembly

Figure 4. Implemented Design

Testing

Detection test setup:

nder simulated conditions

to determine product durability and soiling measurement accuracy.

Tests were conducted

Figure 5. Soiling Chamber

Air Pump 2. Soil Deposition Funnel

- 3. Soil in mid air (soil storm simulation)
- 4. Soil sifter (to refine soil)
- Soiling Sensor 5.
- 6. Sample microscope slide to

determine % soiling loss (Figure 6)

Figure 6. Microscope Slide to Determine Soiling Percentage

Conclusion

- An optimal sensor was created to **detect soiling** and **optimize** cleaning schedules.
- The device fulfills the main design criteria of durability, cost, accuracy, and ease of use.
- Future Objectives:
 - Create an enclosure with higher

heat-resistance

- Utilize optical sensors with higher sensitivity
- Implement this device in large industrial solar farms

Acknowledgements

Michael Valerino, Ph.D. Candidate, Duke University, Client Rebecca Simmons, Ph.D., Duke University, Professor Sophia Santillan, Ph.D., Duke University, Professor Walter Neal Simmons, Ph.D., Duke University, Technical Mentor Jack Dozier, Duke University, Teaching Assistant